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I~aging i.n.surgery. is ~sed ~or diagno.si.s,~lanning, intraoperative navigation and post.-operative e~alua-

tion,!" DIgItal medical imaging modalities mclude computed tomography (CT),magnetic resonance Imag-

ing (MRI), MR therapy (MRT), fluoroscopy and ultrasound.t These modalities are applied singly or jointly

(multimodality) .•.•Surgical requirements differ according to the nature of intervention, and real-time guid-

ance? is sometimes needed such that a sequence of images is generated and displayed as acquired," Soft copy

display on CRT screens is satisfactory for intraoperative use, while hardcopy film images or physical replica

modeling may be needed in other cases. Computed tomography/ developed more than 20 years ago, remains

important in craniofacial'v" and orthopedic surgery." Newer imaging systems, especially ultrasound, mag-

netic resonance imaging,'6 and digital fluoroscopy are used for neurosurgery,":" oncology, cardiothoracic24

and abdominal surgery. Each modality offers specific qualities that subserve specific needs in diagnosis, plan-

ning, intraoperative navigation":" and evaluation (Table 1).

The principal modalities used for surgi-
cal applications are outlined in Table 2. No
single modality serves every need in an ef-
ficient manner, and tailoring the imaging
procedure and technology to match the
specific requirements is a major challenge.
In some instances, combinations of multi-
ple modalities are needed to achieve the
desired results. For example, an abnormal
focus of activity found in a PET scan may

be insufficiently defined anatomically. By
combining the PET scan with a CT or MRI
scan of the same body region such that the
two examinations are superimposible," the
anatomic locus of the abnormal functional
region can be identified. The process used
to unite the PET and CT IMRl scans is
frameless stereotaxy.":"

Recent developments in imaging meth-
ods have advanced minimally invasive
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medicine by allowing image guidance and
introduction of new therapeutic modali-
ties, especially focused ultrasound,
cryotherapy, stereotactic radiotherapy, +5

interstitial laser therapy":" and
brachytherapy (Fig. 1). Among these de-
velopments, the fusion of multiple images
without use of a stereotactic frame" by
frameless stereotaxy is most important.
Combination of optical images derived
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Table 1. Modalities and requirements served in application
of imaging to surgery.

Surgical Application Requirements Modalities

Diagnosis Tissue contrast CT, MRI, ultrasound,
SPECT, PET

Planning Geometric fidelity CT,'· MRI

Intraoperative navigation Geometric precision ultrasound,":" MRT,
and accuracy 29,30

frameless stereotaxy 34,35

Real time display 31

Post-operative evaluation Lesion-tissue contrast CT,MRI

from a video camera with previously ac-
quired CT or MRI scans facilitates the lo-
calization of lesions and critical struc-
tures (Fig, 2),49

Magnetic Resonance Therapy
Intraoperative imaging in an MR scan-

ner specially constructed for guiding and
monitoring minimally invasive surgical
procedures is under evaluation at several
centers, especially Brigham and Women's
Hospital in Boston" (Dr, Jolesz), This sys-
tem (Fig,3) was designed to meet the needs
of interventional MR, and initial results
are encouraging,5I,52

Soft tissue structures are continuously
deformable and can change significantly
during the operative intervention, and so
pre-operative images can only be used as
a general guide to document the size,

Table 2. Modalities used in surgical imaging

Modality Physical Basis Image Types Surgical Limitations
Application

CT X-ray absorption • slice • preoperative • cost
and scattering planning39,40

(Computed • volume • ionizing radiation
Tomography) • postoperative

evaluation

MRI • paramagnetic • slice pre- and post- • cost
properties of operative

(Magnetic tissues • volume • presence of
Resonance metal
Imaging) • flow • cine sequence"

MRT • paramagnetic • slice interventional • cost
properties of therapies

(Magnetic tissues • volume • availability
Resonance (naviqatiorr" and
Therapy) • flow • cine sequence monitoring)

Fluoroscopy X-ray absorption / image sequence intraoperative tissue-lesion
Compton scatter at video rates navigation contrast

Ultrasound acoustic scatter slice intraoperative acoustic window
and attenuation navigation required

real-time
sequence (no interposed

bone or air)

, Frameless multiple modalities navigation localization computationally
Stereotaxy guidance43,44 intense

(typically CT
and/or MRI) intraoperative

changes in soft
tissue geometry
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esting and important new capabilities.
An electronic atlas consists of a volu-

metric data set from a body region with an
integrated knowledge base that contains
the anatomic nomenclature and ancillary
information (such as tissue type, vascular
territory, functional signficance, etc.)
linked to the image data. By combining the
stored atlas volume with interactive com-
puter graphics rendering tools, the user
can generate unique views from any de-
sired perspective (Fig. 4).54

The Visible Human Project at the
National Library of Medicine" is an im-

position and relationship of tissues initially
unless a means to update the information
is available. The ability to monitor such
changes is a major advantage of MRT, flu-
oroscopy and other real-rime methods. 53

ELECTRONIC ANATOMIC ATLAS

The conventional printed textbook
anatomic atlas is familiar and important in
medical education and practice. Electronic
atlases have been constructed which con-
tain the 'information found in the tradi-
tional printed versions, with some inter-

Minimally
Invasive
Medicine

Intervention:
Cryotherapy

Interstitial Laser Therapy
Focused Ultrasound

Brachytherapy

Endoscopy-
rigid or flexible

Pointing Devices:
Articulated Arm
Electromagnetic

Digitizer
Optical Stylus IWand

Modalities:
CT
MR!

SPECT
PET

Ultrasound

Video
Ultrasound

X-ray Fluoroscopy
MR Fluoroscopy

Figure 1. Minimally invasive medicine is practical as a result of new interventional therapies applied
under image guidance.
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portant source of anatomic information.
Adult male and female cadavers have been.
imaged by tissue section, CT and MRI at
high resolution. These data are now avail-
able in the public domain and are found in
many electronic atlases (Fig. 5).

3-D deformable anatomical atlas
matching algorithms based on Grenander's
global shape models have been developed
that accommodate both global and local
shape differences. 56 Anatomical shape is
modeled using a deformable atlas (tem-
plate) and individual shape variation is mod-
eled using probabilistic transformations that

Figure 2. Integrated MRI and surface image.
Combination of previously acquired volumetric
images and intraoperative views of the body
surface has been accomplished using methods of
frameless stereotaxy. A lateral surface view of a
young male subject's head has been superim-
posed with a midline sagittal MRI slice from a
volumetric examination. (Courtesy of Kevin
Shuster, Biomedical Visualization Laboratory,
University of Illinois, Chicago)

Figure 3. Magnetic Resonance Therapy (MRT). A prototype open-configuration MRI system has been developed by GE Medical Systems in collaboration with
Brigham and Women's Hospital (Dr. Ferenc Jolesz). This unit is now installed in the Intervention MRI Center and several additional units have been exported.
(Courtesy of Surgical Planning Laboratory, Brigham and Womens Hospital, Boston, Mass. and GE Medical Systems, Inc.)

Figure 3a. Open MRI system (0.5 Tesla) with integrated anesthesia, monitor-
ing devices and surgical tools is the cornerstone of MRT.

Figure 3b. The surgical field is placed between the paired magnets to allow
direct vision of the site and simultaneous display of MR images for navigation
and monitoring of therapy.
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Figure 4. Electronic atlas of the head. The Voxel
Man ™ electronic atlas of the head contains a vel-
umetric data set with integrated knowledge base
and computer graphics software to allow synthe·
sis of custom images from user specified orienta-
tion. The anatomic labels, tissue type, vascular
territory and functional significance of structures
are accessible through a graphical user interface.
This software operates interactively on desktop
wor1lstations.

Figure 4a (above). A wedge section of the head
has been removed by interactive editing of the
Visible Human-male data set to reveal the internal
structures from a color cryosection data set.

Figure 4b (above). An oblique cutting plane may
be positioned interactively. The left hemisphere of
the Voxel Man atlas is exposed.

Figure 4c (above). The cortical surface of the brain
is color coded and labeled in this atlas view. The
colors and labels are intrinsic to the Voxel Man
atlas, and may be displayed automatically as required.

Figure 4d (above). A temporo-parietal exposure of
the brain surface in this posterior oblique view of
the head was generated to simulate the intraoper-
ative exposure for neurosurgical planning.

Figure 4e (above). An extensive hierarchical
knowledge base is integrated with the volumetric
images allowing linkage from the atlas images to
on-line textbooks of neuroanatomy. (Courtesy of
Prof. Kar1 Heinz Hoehne, IMDM-University of
Hamburg, Germany.)

are applied to the atlas coordinate system.
Continuum mechanical models based on
elasticity and fluidity are used to constrain
the transformations applied to the atlas to
ensure anatomical relationships are main-
tained.

The deformable atlas is matched to a
target volume by estimating the transfor-
mation that deforms it into the shape of a
particular data set. Once deformed, the
resulting individualized atlas contains in-
formation such as tissue type, structure
names, landmarks and other information
keyed to the target data set. Thus, the indi-
vidualized atlas provides a means of auto-
matic labeling and quantifying the shape of
a particular anatomy. Analysis of the atlas
transformation also provides information
for quantifying shape differences and
growth trajectory (Fig. 6).

A deformable textbook that mathemat-
ically represents the shape and variability
of the developing cranium (skull vault) has
been defined. 57.58 The textbook consists of
anatomic information in the form of digi-
tized image volumes (such as CT or MR 3-
D data sets) and descriptive information
such as structure names, locations, and
shapes. The deformable textbook is used
to generate individualized ones. Each indi-
vidualized textbook provides subject spe-
cific information (like structure location,
volume, shape, etc.) normally only known

Figure 5. The Visible Human Project-male. The National Library of Medicine has sponsored the Visible
Human Project where adult male and female cadavers have been imaged by cryosection blockface color
scanning, MRI and CT. These data, unique in their quality and extent, have been placed in the public do-
main and are the basis of many anatomic reference and training systems. From the cryosection data,
the skin, muscle and skeletal surface of the Visible Human-male in frontal projection have been rendered
using computer graphics. (Courtesy of Engineering Animation, Inc., Ames, Iowa)
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Figure 6. Synthesis of an individualized electronic atlas of the head. Global
pattern matching may be applied to an electronic anatomic atlas (or ''text·
book") for creation of a deformed version that matches the surface and in-
ternal structure of a given subject. This process results in the synthesis of an
individualized electronic atlas.

Figure 6a (above). The original electronic atlas of the head (left, designated
"textbook") is matched with a specific individual (center, "subject") to create
a newatlas that has the subject's shape and form (right, "deformed textbook").

Figure 6b (above). The matching process wllrks in three dimensions. The text-
book atlas (left) and original subject (center) do not match when a slice is
taken at an arbitrary level. After global pattern matching, the new individual-
ized atlas (called a "deformed textbook", right) reproduces the size and
shape of the subject and carries the label and segment information assecl-
ated with the atlas (e.g., knowledge base in the Voxel Man atlas).

Figure 7. Craniofacial Surgical Planning and Evaluation. Interactive software
on desktop workstations is used to plan and evaluate craniofacial surgical
procedures. Volumetric CT data are received via an electronic network and vi·
sualization software allows display of the 3·D data. Top row shows the preop-
erative views of the skull in a child with hypertelorism. The ocular globes have
been isolated and are displayed within the orbits. The middle row shows the
result of surgical planning, performed interactively by a surgical research fel-
low. The bottom row was created from post-operative scans to validate the
surgical planning operations and test the quality of this process. (Courtesy of
Surgical Planning Laboratory, Brigham and Womens Hospital, Boston, Mass.
and GE Medical Systems, Inc.)
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Figure 8. Whole body optical surface scanner. Cyberware whole body optical
surface scanner captures the body surface geometry by four active scanners.
This device is the basis for 3-D surface anthropometry that is used to evalu-
ate the size and shape of human populations.

Figure 8a (above). Cyberware scanner system.

Figure 8b (above). Sample data set from an adult female seated and wearing a
body suit. (Courtesy of Kathleen Robinette, CARD-Armstrong Laboratory,
Wright-Patterson AFB, Ohio and Cyberware, Inc.)

Figure 9. Unraveling the facial skeleton into a planar map. Multiple commin-
uted facial fractures in a young male were imaged by computed tomography
and displayed after 3-D reconstruction. Frontal (top left), left lateral (top
right) and panoramic views of the facial skeleton are displayed. By unrav-
eling the scan volume into a planar map, the orientation and relationship
of fracture fragments is conspicuous. (Courtesy of Kevin Shuster,
Biomedical Visualization Laboratory, University of Illinois, Chicago)
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Figure 10. Unraveling the colon for virtual endoscopy. Tracking the colon in volumetric spiral CT scans
is the basis of virtual endoscopy.

Figure lOa. The path of the colon has been identified and fit with a spline curve. The abdominal spiral
CT scan was performed in a single 30 second acquisition on a Siemens Somatom Plus S scanner.

Figure lOb. Coronal, transverse and sagittal multiplanar slices are generated in real time with a
crosshair cursor at the same point within the color on all 3 views. The synthetic "rope" within the colon
is seen as a white tubular structure located centrally in the lumen.
(Courtesy of Kevin Shuster, Biomedical Visualization Laboratory, University of Illinois, Chicago)

for the textbook anatomy. It is generated
by deforming a generalized textbook into
the shape of a particular individual's
anatomy (Fig. 6).

that the simulation will be accurate, com-
plete, useful, nor that it can be accom-
plished efficiently. In fact, it may be the
case that simulation of a surgical proce-
dure is more complex, awkward and diffi-
cult to perform than the procedure itself."
This is especially the case when a surgeon
is involved that has relatively little com-
puting experience. Improvements in inter-
active computer graphics and the availabil-
ity of networked low cost desktop
graphical workstations allows the pre-op-
erative visualization of complex anatomic

SURGICAL SIMULATION

Computer-based imaging for simula-
tion surgery implies graphical display and
manipulation of anatomy, typically derived
from volumetric CT and MR imaging. 59,60
Virtually any surgical procedure can be
simulated, although this does not imply
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abnormalities," surgical planning"J·65and
post-operative evaluation (Fig. 7).66

RECENT IMAGING DEVELOPMENTS

Optical surface imaging of the whole
body for 3-~ anthropometry is underway
at Wright-Patterson Air Force Base and
several other sites." This instrument cap-
tures the external body surface by non-
contact scanning and is used for summa-
rizing the size and shape characteristics of
human populations (Fig. 8).68The optical
scanning technology used for anthropom-
etry has been integrated with volumetric
medical images from CT and MRI to cre-
ate a superimposed visualization for intra-
operative use (Fig. 2).69

Cartographic mapping techniques are
employed to synthesize panoramic views
of the skull (Fig. 9).70These images sim-
plify the interpretation of volumetric CT
and MRI scans, especially for comminuted
fractures of the facial bones.

Virtual endoscopy is a collection of
methods applied to imaging the bowel
noninvasively. After a volumetric CT or
MRI scan, the colon is identified and visu-
alized using techniques that simulate endo-
scopic methods (Fig. 10).71

Many technologies are adaptable to surgi-
cal imaging requirements, and depending on
the ingenuity of investigators , engineers,
physicistsand computer scientists, we can ex-
pect to see further innovations and continued
growth of these applications in the future. (D)
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