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Since active clinical transplantation became a reality, physicians have been in constant conflict with the

body's immunologic defenses. Steroids and azathioprine were the mainstay of immunosuppressive ther-

apy for many years. During these years, graft survival was modest, with survival rates of 50%or less at one

year for cadaver transplants. After the introduction of cyclospor ine A in 1983, renal cadaver graft survival

rates increased to 60-75%. Since that time, other immunosuppressive agents such as OKT3and better patient

management have increased 1-year graft survival rates well above 80%. Nevertheless, present immunosup-

pressive regimens remain toxic, nonspecific, and render the patient at increased risk of infection and lym-

phoproliferative disorders. Presently there exists no "magic bullet" that can render the immune system inca-

pable of rejecting a graft while allowing the patient continued defense against infection. However, a new

sizing a unique mechanism of action.

drug, mycophenolate mofetil (MMF; CellCept®;RS-6144-3)comes surprisingly close to this concept by ernpha-

PURINE METABOLISM IN LYMPHOCYTES
Mycophenolate mofetil is a fermenta-

tion product of several penicillin species.
It has been shown to be a selective in-
hibitor of purine metabolism in lympho-
cytes. This discovery thrust MMF into the
ongoing search for new and more specific
immunosuppressive agents. Purine me-
tabolism became the focus for the devel-
opment of a new immunosuppressive
agent when an adenosine deaminase defi-
ciency in children was found to be associ-
ated with a decreased number and

function of T- and B-Iymphocytes.' In
contrast, the genetic defect in the major
purine salvage pathway catalyzed by hy-
poxanthine guanine phosphoribosyl
transferase (HGPRT) has essentially
normal numbers of lymphocytes and the
responses.'

Allison' concluded that human purine
salvage in lymphocytes plays a major role
compared to other cell types. In resting
lymphocytes, purine biosynthesis is low;
however, when activated by antigens or
mitogens, lymphocytes have greatly in-
creased de novo purine synthesis.
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There are two major pathways of
purine synthesis' (Fig. 1). In the de novo
pathway, the ribophosphate PRPP syn-
thetase and ribonucleotide reductase are
allosterically regulated by nucleotides. In
livers, PRPP synthetase is inhibited by
adenosine nucleotides (AMP and ADP)
and activated by guanosine nucleotides
(GMP, ADP, and GTP).5 Catalytic activity
of ribonucleotide reductase is decreased
by the binding of dATP and stimulated by
the binding of dGTP." Therefore, an excess
of adenosine nucleotides and/or the
depletion of guanosine nucleotides can
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Figure 1. De novo pathways of purine biosynthesis, showing the central position of IMP. MPA inhibits IMP
dehydrogenase, thereby depleting GMP, GTP, and dGTP. Two rate-limiting enzymes in lymphocytes are ac-
tivated by guanosine ribonucleotides and dGTP, but inhibited by AMP, ADP, and dATP.
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Figure 3. Potent inhibition by MPA of the proliferation of human peripheral blood lymphocytes (PBL) re-
sponding to stimulation by various mitogens. Higher concentrations of MPA are required to inhibit the
proliferation of human dermal fibroblasts (FIB) and human umbilical vein endothelial cells (Ee).
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decrease the pool of PRPP, and thereby
decrease the pool of substrates for DNA
polymerase activity. Observations by
Giblett' and Allison':" in children with var-
ious purine salvage pathway deficiencies
led to Allison's conclusion that de novo
purine synthesis is essential for the prolif-
eration of human T- and B-Iymphocytes to
mitogens.

In Figure 1, it can be seen that IMPDH
plays a crucial role. By inhibiting IMPDH,
a subsequent depletion of guanosine nu-
cleotides and nucleosides occurs. MMF ac-
complishes this task.

MYCOPHENOLATE MOFETIL [88-61443]

Mycophenolic Acid (MPA)
Mycophenolic acid (MPA; Fig. 2) selec-

tively inhibits inosine monophosphate de-
hydrogenase (IMPDH) in a noncompeti-
tive, reversible manner.":" MPA does not
require phosphorylation to inhibit
IMPDH, which unlike other nucleotide
analogs, does not inhibit DNA repair en-
zymes or produce chromosomal breaks.

MPA has been shown to inhibit hu-
moral and cell-mediated murine responses
in mice.12 Also, MPA has been found to be
effective against psoriasis and rheumatoid
arthritis. 13·15

In 1982, Allison and Eugui at Syntexl6
.

found MPA strongly inhibited responses of
human lymphocytes to mitogenic stimula-
tion and in mixed lymphocyte responses.
Prior to this, MPA and its analogs had been
studied for anti-tumor effects by Japanese
investigators. ,'.18 They noted immunosup-
pressive activity, but these effects were not
pursued.

Attempts at developing a stable syn-
thetic derivative of MPA with good
bioavailability were unsuccessful. Then,
the morpholinoethvl ester of MPA (Fig. 3)
was found to have improved bioavailability
in primates compared to MPA.19The ester
is rapidly hydrolyzed to yield MPA both in
human peripheral blood mononuclear cell
cultures and in vivo. The ester of MPA is
designated "RS-6144 3."

In vitro Effects of Mycophenolic Acid
MPA is a potent inhibitor of prolifera-

tive responses of human leukocytes, 20·22

Concentrates of MPA as low as 100 nM al-
most completely inhibit B-cell prolifera-
tive responses to pokeweed mitogen, a
T-dependent B-cell mitogen (PWM), and
abrogate antibody production. 2I.2J Both
MPA and mycophenolate mofetil strongly
inhibit proliferation of all human T- and
Bvlyrnphocyte cell lines tested."
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Mycophenolate mofetil or MPA at 1flM
can be achieved clinically and completely
inhibits lymphocyte proliferation, but has
no antiproliferative effects on fibroblasts
or endothelial cells'o (Fig. 4). In addition,
similar concentrations (1-10 flM) inhibit
the proliferation of arterial smooth muscle
cells in culture (Fig. 5), which may be clin-
ically beneficial in the treatment of chronic
rejection. Moreover, MPA in concentra-
tions up to 10 mMoliL do not demonstra-
bly effect phagocytosis and killing bacteria
by human neutrophils. 24

Another interesting aspect of MPA is its
effect on adhesion molecules, which are
important for cell-to-cell interactions. It
has been established that nucleotide inter-
mediates are necessary for the glycosyla-
tion of proteins and lipids. Glucose, galac-
tose, and their amines are transferred to
dolichol phosphates and then to protein
through uridine-diphospho intermediates,
whereas sucrose and mannose are trans-
ferred through guanosine-diphospho in-
termediates. 25 With MPA-mediated deple-
tion of GTP, mannose and furose transfer
to glycoproteins is decreased. Some of
these are adhesion molecules.

Studies by Muller et al. 26 demonstrated
that one of the lymphocyte glycoproteins
effected in VLA-4, the ligand for VCAM-1

. on activated endothelial cells. 27 Also, treat-
ment of either T-cells or IL-1 activated en-
dothelial cells with MPA concentrations of
1-10 mMol decreased lymphocyte attach-
ment. In vivo, this effect may decrease re-
cruitment ofleukocytes into sites of ongo-
ing rejection, even if clonal expansion has
occurred.

In vivo Effects
As stated previously, the morpholi-

noethyl ester of MPA is rapidly hydrolyzed
to yield MPA in vivo, the principle hepatic
metabolite being the glucuronide, most of
which is excreted in the urine. Eugui28

demonstrated that intestinal beta-glucoro-
nidase activity in the mouse hydrolyzes the
glucuronide to MPA. Recycling of these
two products via the enterohepatic circu-
lation has been demonstrated.

Moreover, stimulated lymphocytes and
macro phages have increased beta-glu-
curonidase activity, which implies MPA
glucuronide may be hydrolyzed by these
cells to release MPA at sites of inflamma-
tion and graft rejection;" Euguil2 also
showed that the antiproliferative effects of
MPA are lymphocyte-selective in vivo.
MPA-treated mice exposed to allogeneic
tumor cells intraperitoneally had a
dose-dependent reduction in generation of
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Figure 4. Graph showing that treatment of either T cells or IL-l activated endothelial cells with MPA in
therapeutically attainable concentrations (l-lOpM) decreased lymphocyte attachment to the endothe-
lial cells. HUV=human umbilical vein.
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Figure 5. Effect of MPA and CSA on the proliferation of human arterial smooth muscle cells in culture.

cytotoxic T-lymphocytes. Viable tumor
cells were recovered from the peritoneum
during treatment, while untreated mice
eliminated the tumor cells rapidly. Studies
by Moss et al. 30.31 in rat cardiac allograft
models demonstrated tolerance with
prompt rejection of third-party tissue in
the same treated mice. Knechtle et al. 32 in-
vestigated the possibility that MPA might
be efficacious in inhibiting antibody for-
mation.33 He used male ACI rats as skin
graft donors to Lewis rats. Three success-
ful skin grafts were placed on Lewis recip-
ients at 13- to 14-day intervals, which re-
sulted in higher titers of complement
fixing antibodies as measured by 51 Cr re-
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lease. Heterotopic rat cadaver allografts
were then performed in sensitized ani-
mals. Study groups consisted of MPA at an
oral dose of 20 mcg/kgl day, CSA at
10 mcg/kgl day, and a combination of the
two.

Rejection in control rats occurred be-
tween 1 and 4 days postoperatively,
whereas MMF increased median survival
to 7 days. This was not significant; how-
ever, MMF in combination with CSA in-
creased survival to 14 days. These experi-
ments showed that (1) cytotoxic antibody
titers of individual rats did not correlate
with graft survival in any group; (2) pos-
sible mechanisms of effect include the



inhibition of recruitment of effector cells
and alteration of the effector membranes
of antibody-mediated rejection; and
(3) rejection by sensitized lymphocytes
may be more difficult to prevent than re-
jection by anti-donor antibody.

Platz et al." showed MMF (20
mcg/kg/ day) plus CsA (5 mcg/kg/ day)
and methylprednisolone (0.1 mcg/kg/day)
were effective in prolonging canine renal
allografts. No nephrotoxicity, hepatotoxic-
ity, or bone marrow suppression was ob-
served. In subsequent experiments, MMF
reversed acute renal allograft rejection in
some dogs.l5

Chronic rejection, unlike acute rejec-
tion, is a formidable problem for
long-term graft survival. 36.37 Chronic re-
jection is characterized by proliferation of
smooth muscle cells and fibroblasts. This
process begins in small- and medium-sized
arteries, and later throughout the entire
arterial system of heart, kidneys, and
liver." Lesions are characterized by con-
centric intimal thickening, whereas ather-
osclerotic lesions tend to be focal and
asymmetric.

Billingham 39 postulated that this
process is mediated by T-lymphocytes,
while others believe antibodies against
donor antigens are involved;" In alllikeli-
hood, both humoral and cellular mem-
branes are involved. MMF may be effective
in curbing chronic rejection by its inhibi-
tion ofT-lymphocyte responses and inhibi-
tion of antibody formation. Morris et al. 31

used rat heterotopic heart allografts as a
model for chronic rejection. Neither mod-
erate doses of CSA or tacrolimus were able
to prevent graft coronary disease. When
treated with MMF, long-term recipients
had a low incidence and severity of prolif-
erative arteriopathy. These findings were
corroborated by Steele et al. 40

CLINICAL OBSERVATIONS

Phase I clinical trials were performed
with escalating doses of MMF from 100 to
3,500 mg/day orally in combination with
CSA and prednisone in patients receiving
primary cadaver kidney transplants. 20.41

Follow-up ranged from 2 to 9 months.
Treatment was well tolerated, with GI
complaints being the most prominent
(mild ileus, gastritis, occasional nausea and
vomiting). The fewest episodes of rejec-
tion occurred at doses of 2,000 mg/ day or
more.

A multicenter pilot rescue study" for
refractory kidney transplant rejection en-
rolled 75 patients who had failed

high-dose steroid or OKT3 therapy.
Dosing was 1,000-1,500 mg p.o. b.i.d.
Fifty-two of 75 (69%) patients were res-
cued. Those with an entering creatinine of
4 mg/ dL or lower had better results (79%
vs. 52% for those with a creatinine
>4 mg/dL). Klintmalm" reported a mul-
ticenter liver trial for refractory rejection
and showed an excellent response rate as
well. Deierhoi et al." reported results
from a single center involved in a larger
multicenter trial. Twenty-one patients
were enrolled in the open-label, dose-
ranging trial in primary cadaver trans-
plants. Mean follow-up was 26 months.
Patient and graft survival at 2 years was
100% and 95%, respectively. A second
phase of the study assessed MMF's efficacy
in reversing refractory renal allograft re-
jection. All patients had biopsy-proven re-
jection and had at least one course of
high-dose steroid or OKT3 therapy. Of
26 patients enrolled, one (4%) was with-
drawn for side effects. There were two
deaths. Mean follow-up of 20 months
showed patient and graft survival of 91%
and 54%.

MMF's efficacy has also been shown in
human cardiac cadaver grafts. Kirklin"
showed a decrease in rejection episodes
from 0.67 rejection episodes/ patient/
month before MMF to 0.27 rejection
episodes/patient/month after MMF
(p<O.OOOI). There was no difference in
the frequency of infection.

Sollinger et al. .••conducted a random-
ized, double-blind multicenter study
which enrolled 499 patients who received
primary cadaver renal allografts. Patients
were randomized into three groups:
Group I (MMF 1.0 g b.i.d.); Group 2
(MMF 1.5 g b.i.d.); or Group 3 (azathio-
prine 1-2 mg/kg/ day). Cyclosporine,
corticosteroids, and antithymycote globu-
lin (ATGAM) were administered as part
of a quadruple induction protocol. 47.6%
of patients in Group 3 had biopsy-proven
rejection episodes, compared to 31.1 % in
Group 1 (p=0.0015) and 31.3% in Group
2 (p=0.002). In addition, Group 3 pa-
tients received a greater number of full
courses of antirejection treatment as com-
pared to Group I and Group 2. Moreover,
antilymphocyte agents were used more
frequently in Group 3. The incidence and
types of adverse events were similar in all
groups, but there was a higher incidence
of diarrhea in the MMF groups. Of note,
the MMF groups had a higher incidence
of lymphoma-lymphoproliferative dis-
order (3 patients). Sollinger concluded
that MMF at doses of 2-3 g/ day in
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combination with cyclosporine and corti-
costeroids was more effective than pre-
sent regimens.

CONCLUSION

MMF is a new immunosuppressant that
acts by a unique mechanism. IMPDH is es-
sential in the de novo pathway of purine
synthesis. By inhibiting this enzyme, MMF
inhibits both T and B cells. Experimental
and clinical trials have conclusively proven
MMF's efficacy in treating acute rejection
and the possibility that it may be effective
in chronic rejection. There has been no ev-
idence of nephrotoxicity, hepatotoxicity,
or bone marrow suppression. There was
also no increased incidence in infectious
complications.

MMF promises to reduce the incidence
of rejection episodes and well may be a
major drug in the battle against chronic re-
jection. Em
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